Estimating Genotypic Correlations and Their Standard Errors Using Multivariate Restricted Maximum Likelihood Estimation with SAS Proc MIXED

نویسنده

  • James B. Holland
چکیده

Plant breeders traditionally have estimated genotypic and phenotypic correlations between traits using the method of moments on the basis of a multivariate analysis of variance (MANOVA). Drawbacks of using the method of moments to estimate variance and covariance components include the possibility of obtaining estimates outside of parameter bounds, reduced estimation efficiency, and ignorance of the estimators’ distributional properties when data are missing. An alternative approach that does not suffer these problems, but depends on the assumption of normally distributed random effects and large sample sizes, is restricted maximum likelihood (REML). This paper illustrates the use of Proc MIXED of the SAS system to implement REML estimation of genotypic and phenotypic correlations. Additionally, a method to obtain approximate parametric estimates of the sampling variances of the correlation estimates is presented. MANOVA and REML methods were compared with a real data set and with simulated data. The simulation study examined the effects of different correlation parameter values, genotypic and environmental sample sizes, and proportion of missing data on Type I and Type II error rates and on accuracy of confidence intervals. The two methods provided similar results when data were balanced or only 5% of data were missing. However, when 15 or 25% data were missing, the REML method generally performed better, resulting in higher power of detection of correlations and more accurate 95% confidence intervals. Samples of at least 75 genotypes and two environments are recommended to obtain accurate confidence intervals using the pro-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Genotypic Correlation and Heritability of some of Traits in Faba Bean Genotypes Using Restricted Maximum Likelihood (REML)

In order to estimation genotypic correlation and heritability of some faba bean traits, 26 faba bean genotypes were evaluated in a randomized complete block design with three replications during 2014-16 growing seasons in Agricultural Research Sation of Borujerd located in Lorestan province, Iran. The restricted maximum likelihood (REML) was used to estimate the genotypic and phenotypic correla...

متن کامل

Use of Restricted Maximum Likelihood Approach for Estimation of Genotypic Correlation and Heritability in Bread Wheat (Triticum aestivum L.) Under Water Deficit Stress

Wheat is mostly cultivated at rainfed condition in Iran, so, water deficit stress has much effect on yield reduction. Hence, breeding activities are necessary for introduction of wheat tolerant genotypes to water deficit stress. In order to estimate the heritability and genetic correlation between traits of 36 wheat genotypes, an experiment was conducted in two separate conditions (water stress...

متن کامل

An Intermediate Primer to Estimating Linear Multilevel Models using SAS PROC MIXED

This paper expands upon Bell et al.’s (2013) “A Multilevel Model Primer Using SAS PROC MIXED” in which we presented an overview of estimating two and three-level linear models via PROC MIXED. However, in our earlier paper, we, for the most part, relied on simple options available in PROC MIXED. In this paper, we present a more advanced look at common PROC MIXED options used in the analysis of s...

متن کامل

Estimating Density Dependence, Process Noise, and Observation Error

We describe a discrete-time, stochastic population model with density dependence, environmental-type process noise, and lognormal observation or sampling error. The model, a stochastic version of the Gompertz model, can be transformed into a linear Gaussian state-space model (Kalman filter) for convenient fitting to time series data. The model has a multivariate normal likelihood function and i...

متن کامل

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006